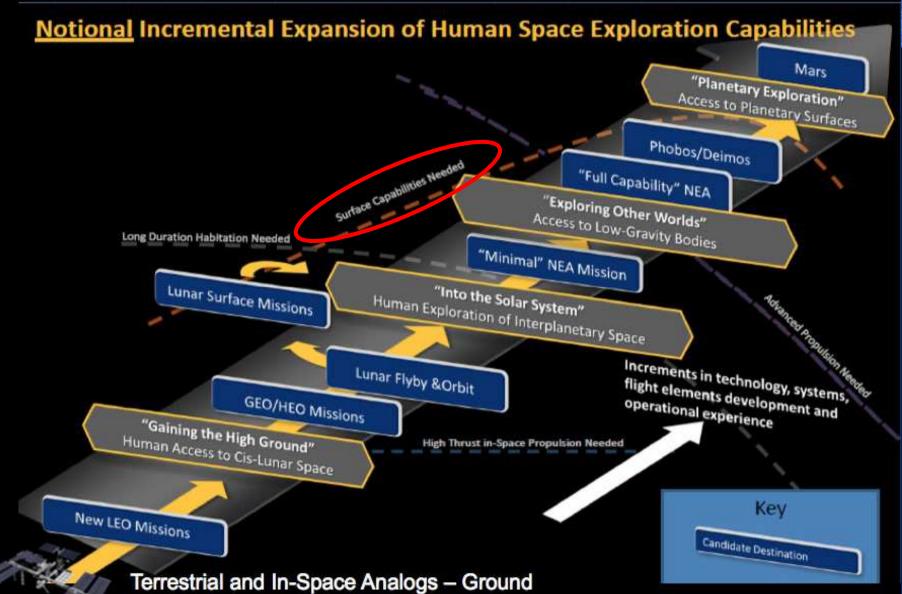


Global Exploration Workshop – Moon Mission Concept with Re-usable Lunar lander

Ben Donahue

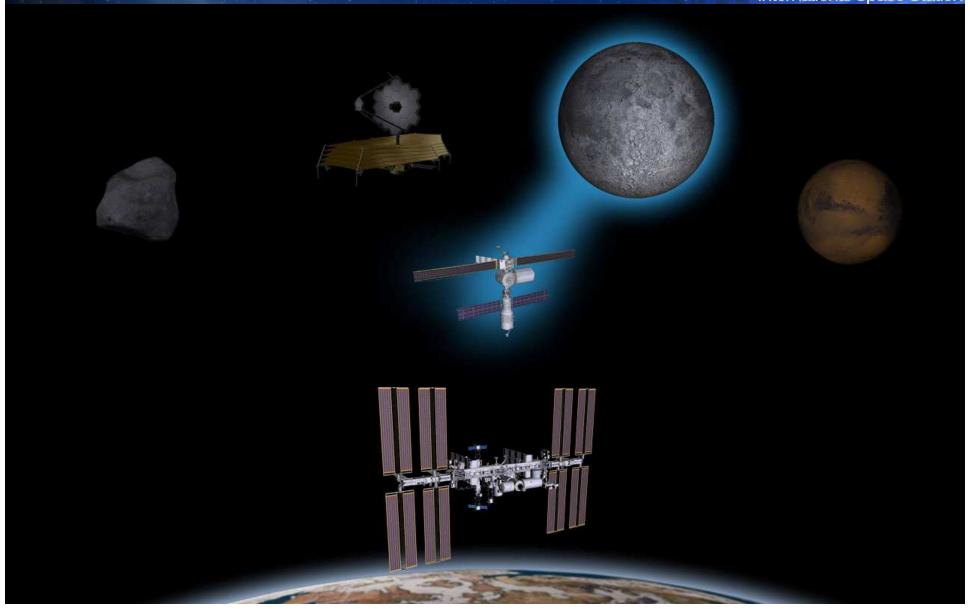
Sr. Principle Engineer, Phantom Works


November 15, 2011

BOEING is a trademark of Boeing Management Company. Copyright © 2011 Boeing. All rights reserved.

Global Exploration Roadmap International Space Station Mars: Ultimate Goal for All Deep Space Habitat at Scenarios Earth-Moon Lagrange Point, **LEO** ISS Near Term Focus on Guiding Capabilities, Long-term Term Focus is Discovery Driven and Enhanced by Emerging Technologies Technologies and Leveraging ISS

Capability Driven Exploration

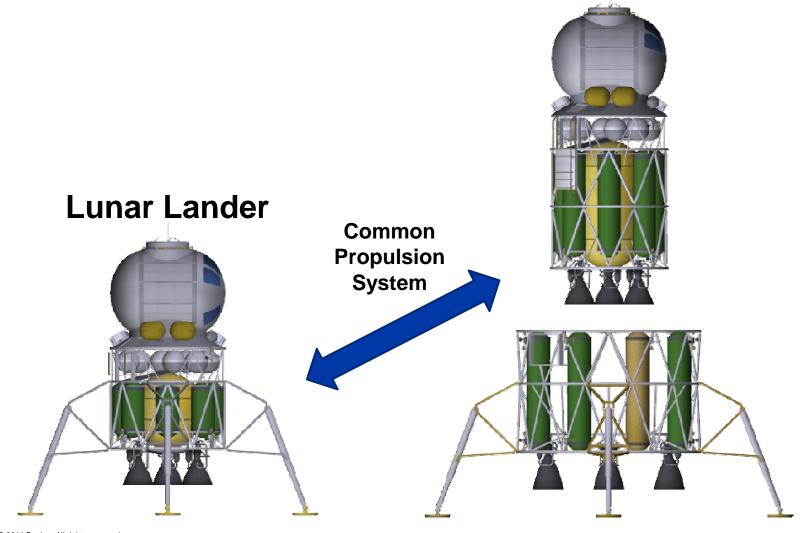

Terrestrial and In-Space Analogs – Ground Ground and Flight Capability Demonstrations

Reference: Bill Gerstenmaier presentation to the 16 June Space Council meeting.

Flexible Path for Exploration

International Space Station

Re-usable Lunar Lander Based at EML1 / 2

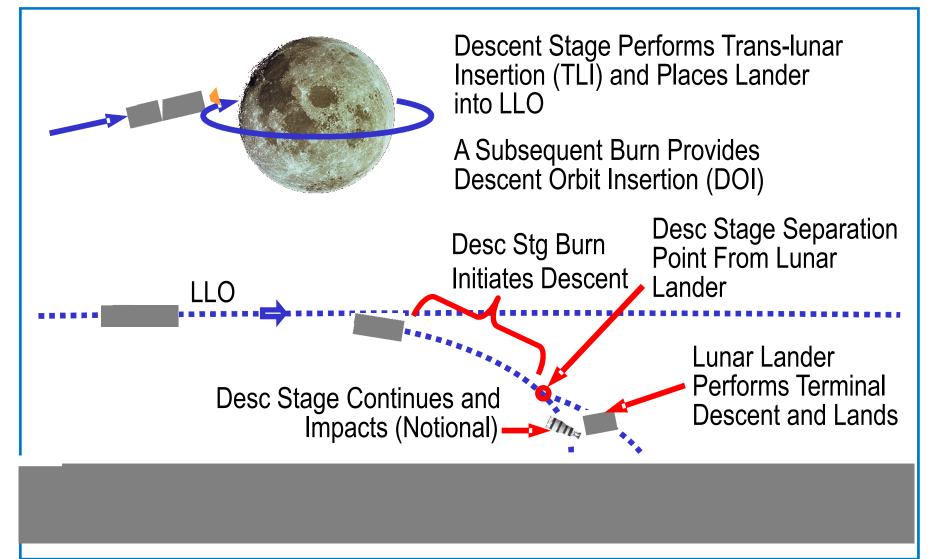

- A Gateway at EML1 or EML2 allows re-usability of the lunar lander which saves money and enhances development of the ultra-reliable systems needed for Mars
- Our concept lander is much smaller than Altair; Dry mass of 7t, wet mass of 15t (Altair was ~45t wet)
- The propulsion system is designed to be re-fuelable LOX/Methane

Lunar Lander as a Pathfinder for Mars

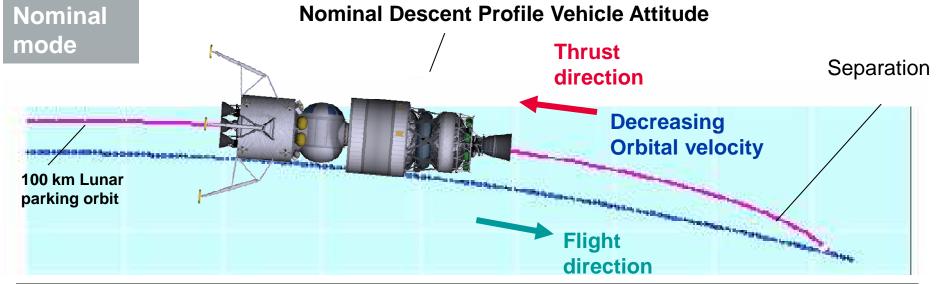
Mars Lander

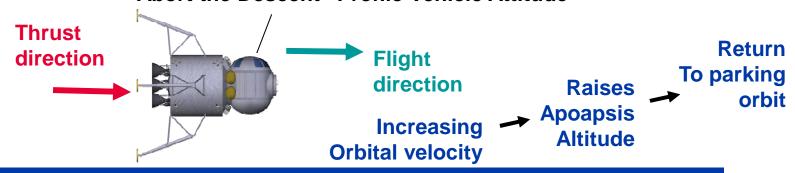


Delivery of the Lunar Lander to the ISS-EP


- Commissioning crew flies with the lander to the platform
- Flight test program in the vicinity of the ISS-EP is used to prepare the lander for it's first landing

Copyright @ 2011 Boeing. All rights reserved.


Lunar Mission Flight Profile


Lunar Mission Flight Profile

Abort mode

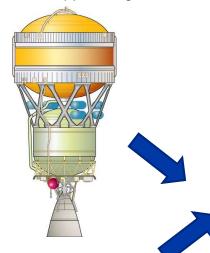
"Abort the Descent" Profile Vehicle Attitude

No Lander rotation required to initiate Abort to orbit burn

Lander is already in position to fire engines to return to orbit

Lunar Lander Departing the ISS-EP International Space Station

Initial SLS Capability


- SLS provides the initial launch capability for exploration missions
- Lunar Mission Study Challenge:
 - Fly a complete lunar mission cycle with a single SLS launch

Third Stage Evolution


Delta 5m Upper Stage

ARES 5.5m Tooling used to build demonstration tank

Block 1

- Tank increase from 5m to 5.5m
- 27t to 40t Capacity

Block 2a

"Moon First"

- Block 2 NDS
- Orbit Kit
- Methane Tank

Block 2b

"NEA First"

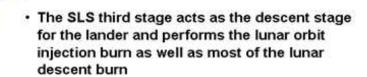
- Block 2 NDS
- Orbit Kit
- RL-10 Throttle

Block 2a Third Stage for SLS

International Space Station

Block 2a:

- "Moon First" Configuration
- Adds solar array system
- AR&D functionality
- Enhanced RCS capability
- NDS with fluid transfer capability
- Additional tank (toroidal) for lunar lander methane delivery
- Assumes SLS 2nd stage will be completed

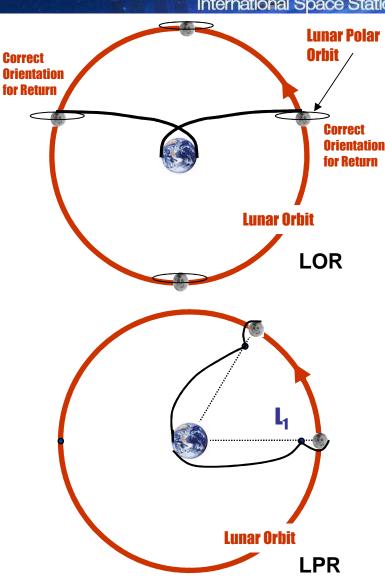

Lunar Lander Recurring Operations

International Space Station

 The goal for recurring operations should be to delivers the crew and all fuel for the lander in a single SLS launch

 This allows for the most efficient use of propellant because the high energy LOX/LH third stage is used immediately after it gets to L1 and long term storage of liquid hydrogen is not required

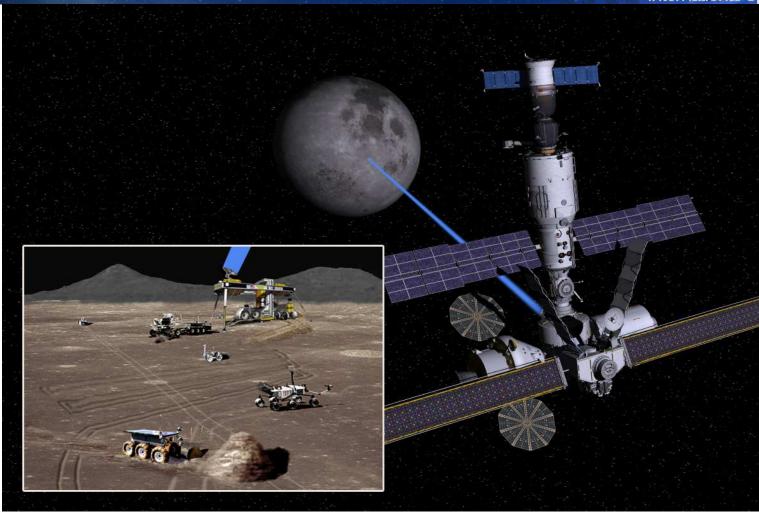
The expensive crew cabin and ascent stage are re-used for multiple missions saving \$\$ Billions


Copyright © 2011 Boeing. All rights reserved.

Lunar Site Access

International Space Station

Operational Considerations


- Lunar Orbit Rendezvous (LOR)
 - Access to lunar poles would require polar orbit if LOR mission mode utilized
 - Lunar polar orbit provides infrequent opportunities for trans-Earth injection (once every 14 days)
 - Orbit orientation inertially fixed, aligns with efficient trans-Earth trajectory twice a month
 - Total ∆V = 8951 m/s
- Libration Point Rendezvous (LPR)
 - Continuous access from L₁ to lunar surface and return
 - Lunar rotation and libration point motion naturally synchronized
 - Continuous access to Earth landing point partially controllable
 - Total ΔV = 10480 m/s
- Unique science opportunities at L₁
- Deep-space human exploration analogs exist at L₁
- Support for deep-space human exploration missions

Telepresence Precursor

International Space Station

On-orbit telerobotic control is a new way of viewing human-robot cooperation.

Dan Lester, Research Fellow
Department of Astronomy
dfl@astro.as.utexas.edu
University of Texas at Austin 512-471-3442

Lunar Mission – Summary

Re-usable Lander – Pathfinder for Mars

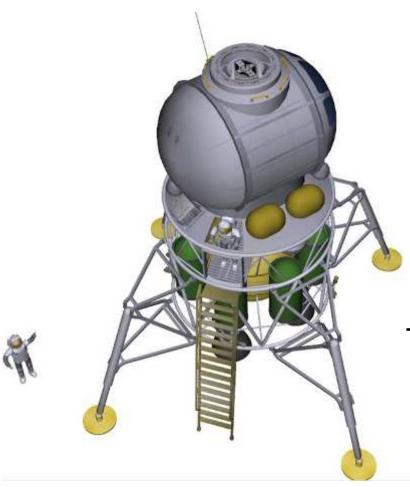
- "Global Access" from EML1/2
- Telerobotics Precursor Potential

Backup Charts

Copyright © 2011 Boeing. All rights reserved.

Lunar Surface Reusable Surface Hab and Crew Lander

International Space Station



Copyright © 2011 Boeing. All rights reserved.

Crew Lander -15 mt Total Mass

International Space Station

delta-V

Surface Payloads	0.50 mt			
Total Systems Mass	14.98 mt			
	mass			

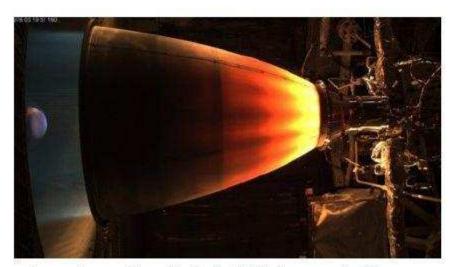
Total Lander Mass	14.48 mt		
Crew Cabin and Systems	3.15 mt		
Dry Mass	2.72 mt		
Propellant total	8.61 mt		

Propellant Masses	8.61 mt	3,133 m/s
Propel Reserves	0.17 mt	
L1 to LLO Prop Main	n/a	
L1 to LLO RCS	0.02 mt	5 m/s
Terminal Desc Propel Main	1.92 mt	500 m/s
Terminal Desc RCS	0.04 mt	10 m/s
Ascent Propel Main	5.20 mt	1950 m/s
Ascent RCS	0.04 mt	10 m/s
LLO to L1 Prop Main	1.18 mt	640 m/s
L1 RCS Prop	0.04 mt	18 m/s

Lunar Mission Mass Estimates

International Space Station

Table 4. Lunar Crew Sortie Mission Mass (mt)


										prop
	Location	Mass	2 ^{N B} Stg	3 ^{RB} Stg	MPCV	L1 Payl	Lander	adapt	Comment	<u>used</u>
1	Asc L1(28tg)	209.6	138.3	45.0	16.7	6.7	n/a	2.9	29tg burn1	121.6
2	Asc L1(3Stg)	69.0	n/a	45.0	16.7	6.7	n/a	0.6	33tg burn1	24.9
3	EML1	44.1	n/a	20.4	16.7	6.7	n/a	0.6	arrive L1	n/a
4	EML1	44.1	n/a	20.1	16.7	6.7	n/a	0.6	39tg connect	n/a
5	Sep from L1	35.6	n/a	20.1	n/a	n/a	14.9	0.6	add lander	n/a
6	Depart L1	35.B	n/a	20.1	n/a	n/a	14.9	0.6	39tg burn2	5.0
7	LLO	30.6	n/a	15.1	n/a	n/a	14.9	0.6	arrive LLO	n/a
7	LL 0-desc	30.6	n/a	15.1	n/a	n/a	14.9	0.6	39tg burn3	9.5
8	desc	21.1	n/a	5.6	n/a	n/a	14.9	0.6	39tg jettison	n/a
9	Desclander	14.9	n/a	n/a	n/a	n/a	14.9	n/a	lan der desc	2.0
10	On L Surf	12.9	n/a	n/a	n/a	n/a	12.9*	n/a	lander asc	5.3
11	LLO	7.5	n/a	n/a	n/a	n/a	7.5	n/a	lander to L1	1.2
12	EML1	6.3	n/a	n/a	n/a	n/a	6.3	n/a	arrive L1	n/a
13	Depart L1	16.7	n/a	n/a	16.7	n/a	n/a	n/a	MPICV sep fro	om L1

^{* 0.5}mt Surface payload drop

LO2 / Methane CH4 Engines for Descent and Ascent

ISRU derived Methane may be used for Mars ascent descent Developmental programs underway at Aerojet and ATK/COR LO2 residuals left in desc stg tanks available Crew on surface Pump-fed Methane engine provides significant Isp (372 sec) over press-fed storable engine (320-328) Shared propel tank O2/CH4 main / RCS system in test

Aerojet, T = 5.5 k-lbf, Isp = 350 sec

ATK/XCOR, T = 7.5 k-lbf

Lander Close Up View

International Space Station

